Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches.
نویسندگان
چکیده
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The physiopathological consequences of frataxin deficiency are a severe disruption of iron-sulfur cluster biosynthesis, mitochondrial iron overload coupled to cellular iron dysregulation and an increased sensitivity to oxidative stress. Frataxin is a highly conserved protein, which has been suggested to participate in a variety of different roles associated with cellular iron homeostasis. The present review discusses recent advances that have made crucial contributions in understanding the molecular mechanisms underlying FRDA and in advancements toward potential novel therapeutic approaches. Owing to space constraints, this review will focus on the most commonly accepted and solid molecular and biochemical studies concerning the function of frataxin and the physiopathology of the disease. We invite the reader to read the following reviews to have a more exhaustive overview of the field [Pandolfo, M. and Pastore, A. (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol., 256 (Suppl. 1), 9-17; Gottesfeld, J.M. (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol. Ther., 116, 236-248; Pandolfo, M. (2008) Drug insight: antioxidant therapy in inherited ataxias. Nat. Clin. Pract. Neurol., 4, 86-96; Puccio, H. (2009) Multicellular models of Friedreich ataxia. J. Neurol., 256 (Suppl. 1), 18-24].
منابع مشابه
Understanding the genetic and molecular pathogenesis of Friedreich’s ataxia through animal and cellular models
In 1996, a link was identified between Friedreich's ataxia (FRDA), the most common inherited ataxia in men, and alterations in the gene encoding frataxin (FXN). Initial studies revealed that the disease is caused by a unique, most frequently biallelic, expansion of the GAA sequence in intron 1 of FXN. Since the identification of this link, there has been tremendous progress in understanding fra...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملNovel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia
Objective(s) The mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS) system. Materials and Methods We searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30...
متن کاملStudies of cellular hypersensitivity to ionising radiation in Friedreich's ataxia.
Skin fibroblasts from seven patients with Friedreich's ataxia showed a small but significant increase in sensitivity to ionising radiation, as measured by post-irradiation clonal growth, when compared with cells from ten age-matched control subjects and from eight patients with motor neuron disease. Fibroblasts from three patients with Friedreich's ataxia also showed impairment of their ability...
متن کاملFriedreich's ataxia. Revision of the phenotype according to molecular genetics.
Friedreich's ataxia is an autosomal recessively inherited neurodegenerative disorder caused by expansions of an unstable GAA trinucleotide repeat in the STM7/X25 gene on chromosome 9q. We studied the (GAA)n polymorphism in 178 healthy controls and 102 patients with idiopathic ataxia. The repeat size ranged from 7 to 29 (GAA)n motifs on normal chromosomes and from 66 to 1360 trinucleotide repeti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 19 R1 شماره
صفحات -
تاریخ انتشار 2010